EMF Compliance Challenges in 26 GHz Wi-Fi Deployment

Understanding Power, Safety, and Spectrum Efficiency

Date: 10th November 2025

The Context

- 26 GHz = millimeter-wave band ($\lambda \approx 1.15$ cm)
- Enables ultra-high data rates and small-cell coverage
- Used for 5G FR2 networks; proposed for Wi-Fi (WoMT)
- 5G uses beam scheduling and duty-cycle control
- Wi-Fi lacks these mechanisms → continuous radiation
- TEC public EMF limit: 5 W/m² (6-minute average)

What is EIRP – Effective Isotropic Radiated Power

EMF Basics and Formula

- Power density (S) = EIRP / $(4 \pi R^2)$
- Safe distance $(R_{sa}f_e) = V(EIRP / (4 \pi \times 5))$
- For safety: $S \le 5 \text{ W/m}^2$
- 5G NR controls EMF by:
- - Narrow beam steering
- - Millisecond-level beam scheduling
- - Dynamic power adaptation
- Wi-Fi = single beam, always ON → higher time-averaged EMF

EIRP Sensitivity – EMF vs Range 100 MHz BW Size

EIRP (dBm)	EIRP (W)	Safe Distance R _{sa} f _e (m)	Range vs 75 dBm
75	31,622	22.4	1.0×
65	3,162	7.1	0.32×
55	316	2.2	0.10×
45	31.6	0.7	0.03×
33	2.0	0.18	0.008×

Observations:

- At 75 dBm, safe clearance \approx 22 m \rightarrow impractical indoors
- Every -20 dB \rightarrow 10× reduction in range
- At 33 dBm, coverage ≈ 1% of macro range
- Either unsafe or inefficient → no middle ground

Visual Trade-offs

• 4 High EIRP (>65 dBm): Violates TEC 5 W/m² limit

• ✓ Low EIRP (<40 dBm): Safe, but range collapses 100×

• 5G solves it with time-averaged beams (scheduler + duty cycle)

Wi-Fi lacks power shaping → continuous exposure

Without control, 26 GHz Wi-Fi = either unsafe or wasteful

Tower Co-location Tightens EMF Rules

- Tower sites host 700/900 MHz macro antennas
- Composite EMF compliance uses worst-case band
- Low frequencies penetrate deeper → tighter exposure limit
- Multi-band towers often evaluated at 1-2 W/m² (700,900 div 400)
- Adding 26 GHz Wi-Fi increases total EMF load
- Hence, tower-mounting tightens, not relaxes, EMF compliance

OR use high (36 meters) independent towers which raises costs

Key Takeaways

- 26 GHz Wi-Fi lacks beam scheduling → continuous radiation
- High EIRP breaches TEC 5 W/m² limit
- Reducing EIRP kills range (10× loss per -20 dB)
- 5G manages EMF via beam duty-cycle & adaptive power
- Tower co-location makes compliance tougher
- Conclusion: 26 GHz use is viable only with 3GPP-style beam management